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Figure 1: Screenshot of our tool, annotated with cursor movements. We split a Parsons problem into two sub-spaces, assigning 
one to each student. They must share fragments from the middle space to complete their assigned part. 

ABSTRACT 
The efectiveness of pair programming in pedagogy depends on 
the frequency and quality of communication of the driver. We 
explore an alternative collaboration paradigm that tackles this im-

balance through Parsons problems: students are given fragments 
of code out of order and tasked with re-organizing them into the 
correct order. We then create an interdependence between students 
by assigning each to a diferent sub-problem in their own space, 
termed Personal-spaces – they must engage in dialog to negoti-
ate, exchange, and share fragments. In an exploratory study with 
nine pairs of undergraduate students, we fnd evidence pointing to 
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afordances of diferent coordination conditions: Personal-spaces 
promoted ownership and engagement, while Turn-taking (akin to 
pair programming) helped maintain a consistent train of thought. 
Our results provide considerations for design of appropriate prob-
lem sets and interfaces to structure collaborative learning. 
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and professional topics → Computer science education. 

KEYWORDS 
collaborative learning, pair programming, Parsons problems 

ACM Reference Format: 
Devamardeep Hayatpur, Tehilla Helfenbaum, Haijun Xia, Wolfgang Stuer-
zlinger, and Paul Gries. 2023. Structuring Collaboration in Programming 
Through Personal-Spaces . In Extended Abstracts of the 2023 CHI Con-
ference on Human Factors in Computing Systems (CHI EA ’23), April 23– 
28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 7 pages. https: 
//doi.org/10.1145/3544549.3585630 

https://doi.org/10.1145/3544549.3585630
https://doi.org/10.1145/3544549.3585630
https://doi.org/10.1145/3544549.3585630
mailto:pgries@cs.toronto.edu
mailto:w.s@sfu.ca


CHI EA ’23, April 23–28, 2023, Hamburg, Germany Hayatpur, et al. 

1 INTRODUCTION 
Collaborative learning has shown to be an efective and widely 
adopted technique in computer science curricula for fostering learn-
ing and critical thinking skills [14, 27]. One form of collaborative 
learning is pair programming, which designates one student to be 
the driver, who writes code, and the other student to be the nav-
igator, who provides feedback and guidance to the driver. Many 
studies of pair programming provide evidence for improved student 
performance [20, 23], as well as long-term academic success [28]. 

However, pair programming is inherently asymmetric: the driver 
can iterate on a solution independent of the navigator. Rodríguez 
et al. found that the learning outcome of pair programming de-
pends on the frequency and quality of communication by the driver 
[26]. Episodes in which the driver scarcely communicated have a 
worse learning outcome for the pair. Meanwhile, efective collabo-
ration depends on shared ownership over the problem, which pair 
programming exercises lack de facto [27]. 

In this work, we describe the design and evaluation of a novel 
collaboration paradigm that aims to support shared ownership. 
Our tool uses Parsons problems as the programming environment, 
i.e., students re-arrange fragments of code to reach the correct 
arrangement. We divide a Parsons problem into two dependent sub-
tasks, each of which are completed in their own space, termed a 
Personal-space (Figure 1). Each Personal-space is assigned to a single 
student, where their partner can view but not modify that space. 
The two students must then share fragments of code from the same 
pool to complete their individual problem in their Personal-space 
and reach an overall solution. 

To explore student perceptions of Personal-spaces, we com-

pared it to two other coordination conditions: (1) Shared-control, 
where both students can modify both spaces; and (2) Turn-taking, 
where only one of the students is able to modify both spaces at a 
time, but participants can swap control to alternate the driver and 
navigator roles, akin to pair programming. We fnd preliminary 
evidence of unique afordances of each coordination condition. For 
example, Turn-taking helped students converge towards a single, 
shared solution. Meanwhile, Personal-spaces encouraged collabo-
rative dialog to negotiate for blocks and resolve conficts, and led to 
a sense of responsibility and ownership over their space. In sum, we 
contribute (a) the design of a novel collaborative Parsons problem 
interface, (b) an exploratory study shedding light on the perceived 
strengths and limitations of these coordination conditions, and 
(c) design considerations for equitable collaborative interfaces. 

2 RELATED WORK 
We draw on prior work in cognitive accounts of collaboration and 
computer science education. 

2.1 Collaborative Learning in Computer Science 
Collaborative learning occurs when two or more students work 
together towards the same goal. It encourages students to external-
ize their mental models, develop shared knowledge, and consider 
multiple perspectives which all help repair misunderstandings and 
gaps in their own knowledge [3, 6, 30, 35]. Pair programming has 
shown to be a successful strategy for conducting co-located synchro-
nous collaborative programming exercises [19, 20, 34]. It promotes 

engagement [21], self-efcacy [24], increases persistence [2], and 
reduces the gender gap in computer science courses [13, 33]. Pairs 
are generally more likely to produce correct code and more likely 
to succeed in the course [21]. The pedagogical benefts of paired 
programming have shown to extend to remote environments as 
well, where it is termed distributed pair programming [4, 11, 29]. 

The efectiveness of pair programming has shown to depend on 
the synergy and social dynamics between the two students. In a 
remote pair programming study, Rodríguez et al. found evidence 
that efective collaboration, where the pairwise learning outcome 
is higher, positively correlated with frequent communication from 
the driver [26]. Although on average pair programming reduces the 
gender gap between male and female computer science students, 
Kuttal et al. identifed that mixed-gender pairs tend not to be demo-

cratic, with one partner dictating the collaboration [16]. Lewis et al. 
found that regardless of providing explicit instructions designed to 
promote equity, some students focused on task completion rather 
than group learning — marginalizing their partner’s learning [17]. 

2.2 Positive Interdependence 
The limitations of pair programming in pedagogy stem from its 
asymmetric interdependencies. The navigator is strongly dependent 
on the driver to manipulate the code (and for the overall success of 
the problem), but the driver has a weak dependency on the navigator. 
A driver can control and dictate the session without communicating 
or cooperating with the navigator [26]. Pair programming sessions 
often encourage or make students swap roles frequently, so both 
members practice being in a position of less dependency, and both 
have an opportunity to learn. However, frequent switches can be 
undesirable in shorter sessions. Best practices require a facilitator, 
like a teaching assistant, to supervise learning [34], which is not 
practical in many circumstances (e.g. in large classes). 

To study efective collaboration in pedagogy, we adopt the un-
derpinnings of positive interdependence, i.e., the belief that “there 
is value in working together with anyone in the group” and both 
the outcome and the learning will be better if done collaboratively 
[10, 27]. Positive interdependence is usually either reward-based, 
i.e., a shared grade, or task-based, i.e., assigned roles or resources 
[15, 27]. At the same time, an overly engineered interdependency 
reduces student autonomy and intrinsic motivation, as well as dic-
tates their social interaction [7]. Each member should have enough 
self-autonomy to feel that they are responsible for completing their 
own work and contributed to the outcome of the group [1]. 

2.3 Parsons Problems 
We will use Parsons problems: broken-up fragments of code that 
must be rearranged into the correct order as the basis for our tool 
[8]. Parsons problems have seen use as a successful learning and 
evaluation tool [9, 25]. Student success in solving Parsons problems 
has shown to correlate with success in writing code [9]. Parsons 
problems lower extrinsic cognitive load, allowing students to work 
constructively towards problems without needing to deal with the 
exact semantics of syntax. Common variations of parsons problems 
include specifying indentation, termed two-dimensional Parsons 
problems [12], and including distractors, which are fragments that 
are not part of the solution. 
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3 COLLABORATIVE PARSONS PROBLEMS 
Our thesis is that collaborative programming interfaces can be de-
signed with more equal and organic (i.e. avoid over-structuring 
their social interactions) learner dependency. To this end, we in-
form our design through two key guidelines following principles 
of positive interdependence: 

(1) Both students must equally communicate and depend on 
one another to reach a solution. 

(2) The interdependence mechanic must have enough ‘room to 
maneuver’ for agency and self-expression. 

3.1 Design Outcome 
Based on these goals, we designed Personal-spaces, which split a 
two-dimensional Parsons problem into two dependent sub-problems 
and assign each sub-problem to one learner. Our design can be char-
acterized by two main attributes: 

3.1.1 A personal and a shared space. The solutions to the two sub-
problems are each assembled in their own Personal-space, giving 
each learner ownership and responsibility over a part of the so-
lution. Initially, a shared space in the middle is populated with 
fragments of code. We pre-populate each individual space with 
documentation to describe its purpose, but ensure that the per-
sonal spaces are otherwise empty at the start. We hypothesize that 
learners will have the autonomy and opportunity to engage with 
the problem in their personal space, and use the shared space to 
resolve misunderstandings, communicate actions, and reach com-

mon ground. In addition, each person’s cursor is represented as a 
colored dot which is synchronized with the color of the space they 
are responsible for. 

3.1.2 A shared pool of resources. Our key insight is that since both 
learners must grab fragments from the same pool, they will need 
to share fragments with each other, in turn stimulating dialog and 
collaboration. And, since the two sub-problems depend on each 
other, the learners are incentivized to communicate what the code 
in their space does to reach a correct solution. Note that Parsons 
problems themselves have interesting implications to collaborative 
scenarios (versus writing code from scratch together). They provide 
a smaller ‘space of actions’ between the two learners, which may 
help establish common ground faster than typical synchronous 
code-writing tasks. 

3.2 Problem Set Design 
To evaluate our approach, we produced a problem set containing 
three introductory sorting algorithms: Bubble sort, Insertion sort, 
and Selection sort. Anecdotally, we fnd these algorithms to be ap-
proachable by students in introductory programming classes yet 
still non-trivial for experienced programmers. Since each sorting 
algorithm has two loop-invariants, they can be split into a parent 
and a helper function, each of which maintain the corresponding 
invariant. We also add distractors containing common error types: 
i.e., code with of-by-one errors in loop range or in list index, re-
versed assignments, reversed swaps, see, e.g., Figure 1. In early pilot 
studies, we identifed that without the ambiguity introduced by the 
distractors, some participants trivially solved the problems solely 
based on the syntax. 

4 EXPLORATORY STUDY 
To explore the efects of introducing a resource interdependence 
to collaboration, we compare Personal-spaces against two other 
coordination conditions: Turn-taking and Shared-control in a 
within-subjects study. 

In Turn-taking, only one person can move the code fragments, 
while the other person observes and provides feedback. To avoid 
any connotations associated with terms ’driver’ and ’navigator’, we 
adopted Bigman et al.’s terminology of pilot (who can edit the code) 
and co-pilot for the study [4]. To provide users with the option 
of swapping control, either person can press a button to reverse 
the roles at any time in this condition. In addition to our verbal 
instructions, the interface also briefy describes each persons role, 
e.g., “As the Co-pilot, you should help guide the Pilot. Ask clarifying 
questions and help the Pilot think through the code.” In the Shared-
control condition, both participants can use both spaces. 

While both Turn-taking and Shared-control techniques are 
novel in the context of Parsons Problems, their general coordi-
nation strategies serve as proxies for existing collaborative tech-
niques: Turn-taking is a proxy for pair programming, and Shared-
control is a proxy for synchronous programming. 

4.1 Participants 
We recruited undergraduate students across two well-known North 
American universities that had completed or were taking an intro-
ductory computer science course (N=18; 6 male; 11 female; 1 prefer 
not to say; ages 18 to 23). Participants were paired solely based 
on their availability. Participant pairs are referred to as P1–P9. We 
refer to individual participants by sub denoting with an ‘a’ or ‘b’. 
I.e., P1a and P1b refer to the two participants in pair 1. Each session 
took under one hour, and participants were compensated $20 USD 
for their participation. On average, participants had 2.6 years of 
programming experience (range: 0–6 years, std. dev.: 1.95 years). 

4.2 Study Procedure 
The order of conditions and problems used were randomized across 
pairs of participants. The frst and second authors supervised and 
directed the web session. The study was structured as follows: 

(5 min) Tutorial. Participants were given a tutorial to familiarize 
themselves with rearranging code fragments and having control 
over spaces. 

(2 min) Introduction to modules. Participants were provided a 
brief introduction to the upcoming problem set. We emphasized 
the 10-minute time limit was to ensure that participants are able to 
view all collaboration conditions, but that there was no expectation 
to complete each problem in 10 minutes. They were encouraged to 
communicate and collaborate on each problem. 

(10 min x 3) Tasks. Each task began with a brief description of 
the current condition (Free-for-all, Personal-spaces, or Turn-
taking). At the start of the Turn-taking condition, participants 
were instructed to swap control frequently to ensure that both 
arrived at an understanding of the code. In the other two conditions, 
participants were generally instructed to communicate, think out 
loud, and work through the problem together. 

(5 min) Post questionnaire. In the post-questionnaire, we collected 
demographics information, previous experience in programming, 
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and the participants’ perception of how much they and their partner 
contributed in each condition, as well as a ranking of the most 
efective conditions for collaboration. 

(10 min) Post interview. We conducted an interview inquiring 
about the participant’s perception of each condition using the 
dimensions of engagement, frustration, conversation, and value-
added by the partner, as well as the efectiveness of Parsons prob-
lems compared to previous collaborative experiences (if applicable). 

4.3 Implementation and Data Collection 
We implemented a client-side web prototype through JavaScript, 
which displays Python-based Parsons problems. Web sockets were 
used to implement synchronous collaboration. A Node.js backend 
server managed client connections and simulated code for evaluat-
ing solutions against test cases. All interactions with the web app, 
such as mouse movement, grabbing of a code fragment, verifying 
the solution, and swapping control were recorded. The study was 
conducted remotely, with Zoom for voice communication. 

4.4 Study Limitations 
The problem difculty, length, or the order in which the problems 
were administered may have had an impact on the observed interac-
tion patterns. The task duration at 10 minutes per problem is likely 
lower than typical collaboration episodes in real pair programming. 
Moreover, the difculty of each problem varied: bubble sort was 
solved 8/9 times, insertion sort 4/9 times, and selection sort 6/9 
times. Our chosen problem set was asymmetrical: the parent func-
tion was shorter than the helper function. The majority (12/18) of 
participants had two or more years of programming experience, as 
such these results may not generalize to early novices. Lastly, these 
results are based on a small sample, and so provide at best anecdo-
tal evidence, which cannot be generalized to learning outcomes or 
compared quantitatively to other collaboration paradigms. 

5 RESULTS 
Three our of our nine pairs were successful in solving all problems 
(P1, P5, P9), three solved only two of the three problems (P2, P3, 
P8), and another three were successful in solving only one of three 
problems (P4, P6, P7). Overall, participants perceived collaboration 
to be most efective in Shared-control (10/18) and least efective 
in Turn-taking (9/18), with Personal-spaces perceived as mostly 
neutral (12/18). 

We conducted a thematic analysis of post-interview refections 
with a focus on comparing the coordination conditions. The frst 
author coded the transcript, deriving 52 codes (e.g., “Did not swap 
control because they did not receive a request to” ). These codes were 
then used to synthesize eight primary themes, which were reviewed 
and refned by the frst and second authors. Below, we report the 
results of the thematic analysis. 

5.1 General Results 
5.1.1 Emergence of new roles. Self-perception of roles plays a cru-
cial part in efective collaboration [5]. Across all conditions, partic-
ipants perceived themselves in roles that were not designated by 
the task structure. Roles sometimes emerged via expertise, e.g., P4b 
conceived of themselves as an “initiator” who got a task in motion 

– a task more comfortable for their beginner-level programming 
experience, and distinguished this role from the “leader” which 
they attributed to their partner. Some other unexpected roles arose 
through circumstance: P7b identifed their testing-based role as 
a result of the fact that “P7a had a bigger role because we started 
with [them] having control frst” (P7b). Some roles were socially 
driven, e.g., P6b described themselves as the conversation-starter, 
and began verbally walking through a concrete example in attempt 
to “start the conversation, so that we can both try thinking out loud 
together.” 

5.1.2 Parsons problems may help to establish common ground. When 
asked to compare their experience in this session to previous syn-
chronous collaborative sessions, multiple participants noted that 
these puzzles help bridge the gap between diferent starting skill 
levels “it’s sort of like both people are at the same baseline... it’s harder 
for one person to realize ‘Oh that’s how we do it’ and just fnish ev-
erything” (P3b). In addition, Parsons problems may help constrain 
the space of possible solutions; both partners are working with 
the same solution components, and so share a starting point (P6b). 
Instead of an infnite number of lines of code for each participant 
to try on their own, there are concrete pieces of potential code to 
discuss and “you can’t like write whatever you want” (P5b). 

5.2 Strategy Specifc Results 
5.2.1 Personal-spaces promote collaborative dialog. P7a explained 
that Personal-spaces “force you to interact with the other person. 
Because you absolutely can’t control their personal space... if you had 
an idea, you had to communicate it in a way they would understand.” 
P1b noted that the dependencies of the two methods gave rise to 
conversation, “you could say ‘Okay my method does this. How does it 
afect your method?’.” Some participants found this added friction to 
task completion, P8b felt “bottlenecked by the other person. I would 
ask like ‘What part of this code do you want?’... I would need to 
wait for the other person to engage.” P5a was frustrated by being 
unable to manipulate the other space “because I wasn’t able to drag 
blocks into [their] section, so I kind of had to like tell [them] what 
to do.” The requirement for dialogue also appeared to increase the 
amount of agency participants had individually in forming the 
solution, as even in cases where participants tried to micromanage 
the spaces they could not access, they would still rely on the other 
participant’s cooperation. Participants noted that this allowed them 
to experience agency in the solutions since “[they’re] the one doing 
it, and not [their partner] invading [their] space and doing it for 
[them]” (P4b). 

5.2.2 Personal-spaces work towards balanced engagement. P1b 
noted that even though they were mostly learning from P1a, “I felt 
like I did do my part with the Personal-spaces just because I can 
focus on one small thing and digest it a little more.” Personal-spaces 
also made learning more intentional compared to other conditions: 
“sometimes, if you are not paying attention to what the other person 
is doing, then you didn’t learn that part... when you have your own 
little space, you’re forced to do that part, so you get to learn more” 
(P2b). In addition, making participants engage in dialog discour-
aged one person from taking over, unlike in “Shared-control one 
and the Turn-taking [which] were the least for communication and 
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Figure 2: Frequency of participant dialogue and tool use over time grouped by coordination condition. There were no signifcant 
diferences in the average time taken or in the length of verbal dialog between the conditions. Turn-taking sessions were by 
far the least symmetric in terms of interactions with the tool with only P7 swapping control to give both partners an even 
amount of control time. Note, for visibility purposes, tool use visual marks have added thickness, their size does not correspond 
to the exact time taken. 

collaboration. Just because it seems like one person can do most of the 
heavy lifting.” (P4b). However, the push to involve each participant 
towards engaging in their section highlighted imbalance in work-
load assigned due to the helper function being more difcult than 
the parent function: “I felt like one method required only little code 
while another method required a lot more code” (P1b). 

5.2.3 Personal-spaces can fragment collaboration. Multiple partic-
ipants noted that Personal-spaces encouraged divide and conquer, 
with communication occurring at the end to synthesize the results. 
P7b noted that instead of actively collaborating, they “work[ed] on 
the task that’s given to us [in our individual sections] and after a 
while we come back together and talk about what we just did.” P4a 
“just ignore[d] some details in helper function... that part [is] more 
[their] responsibility, so I only need to take care of my part.” This 
fragmentation of workload can also fragment the conversation, and 
P6a noted that “as soon as we fgure out what diferent roles [our 
spaces] have, I’ll just start focusing on my own role. That’s why I tend 
to talk a little bit less.” 

5.2.4 Turn-taking encourages a single train of thought. Turn-
taking supported participants in synchronizing their approaches 
and maintaining joint-attention. In Turn-taking, P3a felt like they 
and their partner were on the “same page the whole time... in the 
other two, I felt like I didn’t have the assurance because it felt like 
[they were] looking at the other side.”. However, a downside of the 
single train of thought is that it allows for a single participant to 
take over, or conversely, become extremely passive e.g., P3b did not 
actively engage with the problem because “I kind of forgot about 
bubble sort, so I was in the role of observing”. Moreover, the condition 
does not necessitate any dialogue in the event where the driver 

chooses to solve the problem alone. P7b described this experience 
as “both thinking in our heads instead of talking about it more.” (P7b) 

5.2.5 Pairs rarely utilize the ability to swap control in order to bal-
ance involvement. Despite instructions to do so, participants rarely 
swapped control (Figure 2) in the Turn-taking condition. When 
asked how participants decided to swap, only one pair was con-
cerned with balance and thus swapped control “after fve minutes, 
just to give my partner another fve minutes.” (P2a). Instead, swaps 
were motivated by practical factors like if the other person has 
an “idea, while I haven’t” (P4b). However, practical considerations 
would not always result in a swap. As the Co-pilot, P7b was “too 
scared to ask to swap control... [and so] just let the other person take 
over”, and as a Pilot, P8b felt like they were “on a good train of 
thought... [they] didn’t feel the need to swap control or receive a 
request to swap control.” 

5.2.6 Shared-control provides complete agency. Many partici-
pants expressed their preference for Shared-control since they 
were able to execute their own ideas without being ‘held back’ by 
their partner. P1a found Shared-control to be the most engaging 
because it gave them “the freedom to do what [they thought] should 
be done”. Some participants utilized this freedom vary their extent 
of involvement. P5b shared that there was a give and take between 
them and their partner as “there was parts that I wasn’t sure about 
and then [they] help[ed] me with that and... I was able to fgure out 
parts that maybe [they weren’t] sure about and then explain it to 
[them]”. P5a agreed that in the Shared-control condition “you 
complete the parts that you’re sure about that I’m not sure about and 
then contribute that way”. 
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However, this independence came at the cost of disorganized 
collaboration. Shared-control was “chaotic and you can acciden-
tally change something that your partner thinks you’re not going 
to touch... it could break someone’s train of thought” (P1b). It was 
difcult to repair conversations: e.g., “I think the least talking was 
Shared-control, because we were like looking at the code and mov-

ing things, and then just the whole conversation thing kind of felt 
like a mess” (P3a). Although some participants felt compelled to 
describe their thought process to avoid “making the other one feel 
that I’m doing things without involving them” (P6a), they did not feel 
as if it was required: “[In Shared-control] I didn’t feel obligated to 
explain because I could just move everything myself” (P7a). 

6 DISCUSSION 
Each coordination condition showed strengths and weaknesses 
with regards to efective collaboration. Shared-control allowed 
for more agency but can lead to one participant dominating and 
disorganized communication. Turn-taking promoted a single train 
of thought but lead to one participant taking the lead. Personal-
spaces encouraged both participants to contribute – as the lack of 
ability to control the other participant’s space necessitates dialogue 
to execute ideas in the other user’s space – but lead to division and 
dominant participants still verbally micromanaged. Considering 
the potential gains and losses discussed above, we believe that 
Personal-spaces is a promising approach to allow both participants 
to gain insight into the chosen problem. In Personal-spaces, both 
participants will have interacted to some extent with the problem, 
and will have more incentive to discuss the problem. 

6.1 Design Considerations and Future Work 
Our technique is inherently tied to the characteristics of Parsons 
Problems (i.e., there being a shared and limited resource with code 
blocks) and as such it would not directly translate to more general 
coding environment. We still hope that our guiding design goals 
and subsequent evaluation can serve as a promising start to investi-
gate how collaborative learning can be structured beyond Parsons 
Problems. Through our work we have identifed three key areas of 
investigation for collaborative programming interfaces. 

6.1.1 Problems should be divided evenly and non-trivially. We ob-
served instances where where participants integrated their solu-
tions at the end with Personal-spaces rather than actively engag-
ing with each other’s spaces, which is not ideal for collaborative 
learning. Designing sub-problems that (1) have dependence, and 
(2) have enough uncertainty that communication is required to 
successfully implement them, is crucial to encourage cooperation. 
Additionally, in the problem sets we constructed, there was a clear 
imbalance of workload: the helper functions were more challenging 
than the parent function. By attempting to fx the asymmetry in 
Turn-taking by giving each participant their own tasks, there is 
an obligation to keep these separate workloads (at least roughly) 
balanced. One option to approach this would be to use less strictly 
defned problems, which may encourage sharing of the workload 
between fnding and communicating requirements. Variations in 
Parsons problems, such as faded Parsons problem, which add am-

biguity to the fragments [32], or sub-goals [22], which are at a 

fner level of granularity than functions, can also enable new and 
interesting designs of such divided problem sets. 

6.1.2 Structuring the task structures the conversation. We found that 
structuring the task, either with Turn-taking or with Personal-
spaces, helped structure the dialog between participants. Turn-
taking enabled pursuit of a more consistent ‘vision’ of the overall 
solution while Personal-spaces emphasized negotiations over 
egocentric solutions. However, this work has only investigated 
participant perceptions of each condition. Future conversational 
analysis is needed to shed light on the discourse between learners: 
such as the kinds of dialog (e.g. handling conficts, thinking-out-
loud, [31]), conversational turn-taking and synchronization that 
occurred in each condition. While our analysis found no pair-wise 
efects, observing participants’ conversations in-situ can illuminate 
potential efects of interpersonal dynamics and learning styles (e.g., 
as follower or leader). 

6.1.3 Remote collaboration tools can leverage new kinds of inter-
actions to help reach common ground. Participants organized and 
re-organized the shared space to spatially reason together about 
the problem. They frequently used their cursor to point out objects 
and locations, as well as mimic their thought process through ges-
tures with their cursor. Adding expressivity, such as annotations, 
to the tool may thus make it easier to repair gaps in understanding, 
speaking, or hearing. Additionally, a visualization that helps direct 
the conversation could also be a promising direction. For example, 
visualizing how long each person was in control, or visualizing the 
frequency of conversational turn-taking may help learners refect 
on and encourage more democratic collaboration [18]. 

7 CONCLUSION 
We have presented the design of a novel collaboration technique, 
Personal-spaces, which addresses the imbalance in pair program-

ming for collaborative learning by dividing the problem into two 
parts and assigning each to one learner. We provide preliminary 
evidence of the usefulness of this paradigm: Personal-spaces were 
unique in their insistence that both participants construct (parts 
of) the solution. This level of interaction contributed to a sense and 
responsibility and ownership over the solution and discouraged 
dominant members from completely taking over the solution. How-
ever, in worse scenarios, participants would divide and conquer to 
focus purely on their portion of the code, or become over-involved 
in the other person’s space and instruct them how to complete 
their solution. Our results highlight the need for structure in col-
laborative tools, use of balanced but ambiguous problem sets, and 
provide promising leads for interaction design of future remote 
collaboration systems. 
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