
Structuring Collaboration in Programming Through
Personal-Spaces

Devamardeep Hayatpur Tehilla Helfenbaum Haijun Xia
University of California, San Diego University of Toronto University of California, San Diego

La Jolla, California, USA Toronto, Ontario, Canada La Jolla, California, USA
dshayatpur@ucsd.edu t.helfenbaum@mail.utoronto.ca haijunxia@ucsd.edu

Wolfgang Stuerzlinger Paul Gries
Simon Fraser University University of Toronto

Vancouver, British Columbia, Canada Toronto, Ontario, Canada
w.s@sfu.ca pgries@cs.toronto.edu

Figure 1: Screenshot of our tool, annotated with cursor movements. We split a Parsons problem into two sub-spaces, assigning
one to each student. They must share fragments from the middle space to complete their assigned part.

ABSTRACT
The efectiveness of pair programming in pedagogy depends on
the frequency and quality of communication of the driver. We
explore an alternative collaboration paradigm that tackles this im-

balance through Parsons problems: students are given fragments
of code out of order and tasked with re-organizing them into the
correct order. We then create an interdependence between students
by assigning each to a diferent sub-problem in their own space,
termed Personal-spaces – they must engage in dialog to negoti-
ate, exchange, and share fragments. In an exploratory study with
nine pairs of undergraduate students, we fnd evidence pointing to

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI EA ’23, April 23–28, 2023, Hamburg, Germany
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9422-2/23/04.
https://doi.org/10.1145/3544549.3585630

afordances of diferent coordination conditions: Personal-spaces
promoted ownership and engagement, while Turn-taking (akin to
pair programming) helped maintain a consistent train of thought.
Our results provide considerations for design of appropriate prob-
lem sets and interfaces to structure collaborative learning.

CCS CONCEPTS
• Human-centered computing → Synchronous editors; • Social
and professional topics → Computer science education.

KEYWORDS
collaborative learning, pair programming, Parsons problems

ACM Reference Format:
Devamardeep Hayatpur, Tehilla Helfenbaum, Haijun Xia, Wolfgang Stuer-
zlinger, and Paul Gries. 2023. Structuring Collaboration in Programming
Through Personal-Spaces . In Extended Abstracts of the 2023 CHI Con-
ference on Human Factors in Computing Systems (CHI EA ’23), April 23–
28, 2023, Hamburg, Germany. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3544549.3585630

https://doi.org/10.1145/3544549.3585630
https://doi.org/10.1145/3544549.3585630
https://doi.org/10.1145/3544549.3585630
mailto:pgries@cs.toronto.edu
mailto:w.s@sfu.ca

CHI EA ’23, April 23–28, 2023, Hamburg, Germany Hayatpur, et al.

1 INTRODUCTION
Collaborative learning has shown to be an efective and widely
adopted technique in computer science curricula for fostering learn-
ing and critical thinking skills [14, 27]. One form of collaborative
learning is pair programming, which designates one student to be
the driver, who writes code, and the other student to be the nav-
igator, who provides feedback and guidance to the driver. Many
studies of pair programming provide evidence for improved student
performance [20, 23], as well as long-term academic success [28].

However, pair programming is inherently asymmetric: the driver
can iterate on a solution independent of the navigator. Rodríguez
et al. found that the learning outcome of pair programming de-
pends on the frequency and quality of communication by the driver
[26]. Episodes in which the driver scarcely communicated have a
worse learning outcome for the pair. Meanwhile, efective collabo-
ration depends on shared ownership over the problem, which pair
programming exercises lack de facto [27].

In this work, we describe the design and evaluation of a novel
collaboration paradigm that aims to support shared ownership.
Our tool uses Parsons problems as the programming environment,
i.e., students re-arrange fragments of code to reach the correct
arrangement. We divide a Parsons problem into two dependent sub-
tasks, each of which are completed in their own space, termed a
Personal-space (Figure 1). Each Personal-space is assigned to a single
student, where their partner can view but not modify that space.
The two students must then share fragments of code from the same
pool to complete their individual problem in their Personal-space
and reach an overall solution.

To explore student perceptions of Personal-spaces, we com-

pared it to two other coordination conditions: (1) Shared-control,
where both students can modify both spaces; and (2) Turn-taking,
where only one of the students is able to modify both spaces at a
time, but participants can swap control to alternate the driver and
navigator roles, akin to pair programming. We fnd preliminary
evidence of unique afordances of each coordination condition. For
example, Turn-taking helped students converge towards a single,
shared solution. Meanwhile, Personal-spaces encouraged collabo-
rative dialog to negotiate for blocks and resolve conficts, and led to
a sense of responsibility and ownership over their space. In sum, we
contribute (a) the design of a novel collaborative Parsons problem
interface, (b) an exploratory study shedding light on the perceived
strengths and limitations of these coordination conditions, and
(c) design considerations for equitable collaborative interfaces.

2 RELATED WORK
We draw on prior work in cognitive accounts of collaboration and
computer science education.

2.1 Collaborative Learning in Computer Science
Collaborative learning occurs when two or more students work
together towards the same goal. It encourages students to external-
ize their mental models, develop shared knowledge, and consider
multiple perspectives which all help repair misunderstandings and
gaps in their own knowledge [3, 6, 30, 35]. Pair programming has
shown to be a successful strategy for conducting co-located synchro-
nous collaborative programming exercises [19, 20, 34]. It promotes

engagement [21], self-efcacy [24], increases persistence [2], and
reduces the gender gap in computer science courses [13, 33]. Pairs
are generally more likely to produce correct code and more likely
to succeed in the course [21]. The pedagogical benefts of paired
programming have shown to extend to remote environments as
well, where it is termed distributed pair programming [4, 11, 29].

The efectiveness of pair programming has shown to depend on
the synergy and social dynamics between the two students. In a
remote pair programming study, Rodríguez et al. found evidence
that efective collaboration, where the pairwise learning outcome
is higher, positively correlated with frequent communication from
the driver [26]. Although on average pair programming reduces the
gender gap between male and female computer science students,
Kuttal et al. identifed that mixed-gender pairs tend not to be demo-

cratic, with one partner dictating the collaboration [16]. Lewis et al.
found that regardless of providing explicit instructions designed to
promote equity, some students focused on task completion rather
than group learning — marginalizing their partner’s learning [17].

2.2 Positive Interdependence
The limitations of pair programming in pedagogy stem from its
asymmetric interdependencies. The navigator is strongly dependent
on the driver to manipulate the code (and for the overall success of
the problem), but the driver has a weak dependency on the navigator.
A driver can control and dictate the session without communicating
or cooperating with the navigator [26]. Pair programming sessions
often encourage or make students swap roles frequently, so both
members practice being in a position of less dependency, and both
have an opportunity to learn. However, frequent switches can be
undesirable in shorter sessions. Best practices require a facilitator,
like a teaching assistant, to supervise learning [34], which is not
practical in many circumstances (e.g. in large classes).

To study efective collaboration in pedagogy, we adopt the un-
derpinnings of positive interdependence, i.e., the belief that “there
is value in working together with anyone in the group” and both
the outcome and the learning will be better if done collaboratively
[10, 27]. Positive interdependence is usually either reward-based,
i.e., a shared grade, or task-based, i.e., assigned roles or resources
[15, 27]. At the same time, an overly engineered interdependency
reduces student autonomy and intrinsic motivation, as well as dic-
tates their social interaction [7]. Each member should have enough
self-autonomy to feel that they are responsible for completing their
own work and contributed to the outcome of the group [1].

2.3 Parsons Problems
We will use Parsons problems: broken-up fragments of code that
must be rearranged into the correct order as the basis for our tool
[8]. Parsons problems have seen use as a successful learning and
evaluation tool [9, 25]. Student success in solving Parsons problems
has shown to correlate with success in writing code [9]. Parsons
problems lower extrinsic cognitive load, allowing students to work
constructively towards problems without needing to deal with the
exact semantics of syntax. Common variations of parsons problems
include specifying indentation, termed two-dimensional Parsons
problems [12], and including distractors, which are fragments that
are not part of the solution.

Structuring Collaboration in Programming Through Personal-Spaces CHI EA ’23, April 23–28, 2023, Hamburg, Germany

3 COLLABORATIVE PARSONS PROBLEMS
Our thesis is that collaborative programming interfaces can be de-
signed with more equal and organic (i.e. avoid over-structuring
their social interactions) learner dependency. To this end, we in-
form our design through two key guidelines following principles
of positive interdependence:

(1) Both students must equally communicate and depend on
one another to reach a solution.

(2) The interdependence mechanic must have enough ‘room to
maneuver’ for agency and self-expression.

3.1 Design Outcome
Based on these goals, we designed Personal-spaces, which split a
two-dimensional Parsons problem into two dependent sub-problems
and assign each sub-problem to one learner. Our design can be char-
acterized by two main attributes:

3.1.1 A personal and a shared space. The solutions to the two sub-
problems are each assembled in their own Personal-space, giving
each learner ownership and responsibility over a part of the so-
lution. Initially, a shared space in the middle is populated with
fragments of code. We pre-populate each individual space with
documentation to describe its purpose, but ensure that the per-
sonal spaces are otherwise empty at the start. We hypothesize that
learners will have the autonomy and opportunity to engage with
the problem in their personal space, and use the shared space to
resolve misunderstandings, communicate actions, and reach com-

mon ground. In addition, each person’s cursor is represented as a
colored dot which is synchronized with the color of the space they
are responsible for.

3.1.2 A shared pool of resources. Our key insight is that since both
learners must grab fragments from the same pool, they will need
to share fragments with each other, in turn stimulating dialog and
collaboration. And, since the two sub-problems depend on each
other, the learners are incentivized to communicate what the code
in their space does to reach a correct solution. Note that Parsons
problems themselves have interesting implications to collaborative
scenarios (versus writing code from scratch together). They provide
a smaller ‘space of actions’ between the two learners, which may
help establish common ground faster than typical synchronous
code-writing tasks.

3.2 Problem Set Design
To evaluate our approach, we produced a problem set containing
three introductory sorting algorithms: Bubble sort, Insertion sort,
and Selection sort. Anecdotally, we fnd these algorithms to be ap-
proachable by students in introductory programming classes yet
still non-trivial for experienced programmers. Since each sorting
algorithm has two loop-invariants, they can be split into a parent
and a helper function, each of which maintain the corresponding
invariant. We also add distractors containing common error types:
i.e., code with of-by-one errors in loop range or in list index, re-
versed assignments, reversed swaps, see, e.g., Figure 1. In early pilot
studies, we identifed that without the ambiguity introduced by the
distractors, some participants trivially solved the problems solely
based on the syntax.

4 EXPLORATORY STUDY
To explore the efects of introducing a resource interdependence
to collaboration, we compare Personal-spaces against two other
coordination conditions: Turn-taking and Shared-control in a
within-subjects study.

In Turn-taking, only one person can move the code fragments,
while the other person observes and provides feedback. To avoid
any connotations associated with terms ’driver’ and ’navigator’, we
adopted Bigman et al.’s terminology of pilot (who can edit the code)
and co-pilot for the study [4]. To provide users with the option
of swapping control, either person can press a button to reverse
the roles at any time in this condition. In addition to our verbal
instructions, the interface also briefy describes each persons role,
e.g., “As the Co-pilot, you should help guide the Pilot. Ask clarifying
questions and help the Pilot think through the code.” In the Shared-
control condition, both participants can use both spaces.

While both Turn-taking and Shared-control techniques are
novel in the context of Parsons Problems, their general coordi-
nation strategies serve as proxies for existing collaborative tech-
niques: Turn-taking is a proxy for pair programming, and Shared-
control is a proxy for synchronous programming.

4.1 Participants
We recruited undergraduate students across two well-known North
American universities that had completed or were taking an intro-
ductory computer science course (N=18; 6 male; 11 female; 1 prefer
not to say; ages 18 to 23). Participants were paired solely based
on their availability. Participant pairs are referred to as P1–P9. We
refer to individual participants by sub denoting with an ‘a’ or ‘b’.
I.e., P1a and P1b refer to the two participants in pair 1. Each session
took under one hour, and participants were compensated $20 USD
for their participation. On average, participants had 2.6 years of
programming experience (range: 0–6 years, std. dev.: 1.95 years).

4.2 Study Procedure
The order of conditions and problems used were randomized across
pairs of participants. The frst and second authors supervised and
directed the web session. The study was structured as follows:

(5 min) Tutorial. Participants were given a tutorial to familiarize
themselves with rearranging code fragments and having control
over spaces.

(2 min) Introduction to modules. Participants were provided a
brief introduction to the upcoming problem set. We emphasized
the 10-minute time limit was to ensure that participants are able to
view all collaboration conditions, but that there was no expectation
to complete each problem in 10 minutes. They were encouraged to
communicate and collaborate on each problem.

(10 min x 3) Tasks. Each task began with a brief description of
the current condition (Free-for-all, Personal-spaces, or Turn-
taking). At the start of the Turn-taking condition, participants
were instructed to swap control frequently to ensure that both
arrived at an understanding of the code. In the other two conditions,
participants were generally instructed to communicate, think out
loud, and work through the problem together.

(5 min) Post questionnaire. In the post-questionnaire, we collected
demographics information, previous experience in programming,

CHI EA ’23, April 23–28, 2023, Hamburg, Germany Hayatpur, et al.

and the participants’ perception of how much they and their partner
contributed in each condition, as well as a ranking of the most
efective conditions for collaboration.

(10 min) Post interview. We conducted an interview inquiring
about the participant’s perception of each condition using the
dimensions of engagement, frustration, conversation, and value-
added by the partner, as well as the efectiveness of Parsons prob-
lems compared to previous collaborative experiences (if applicable).

4.3 Implementation and Data Collection
We implemented a client-side web prototype through JavaScript,
which displays Python-based Parsons problems. Web sockets were
used to implement synchronous collaboration. A Node.js backend
server managed client connections and simulated code for evaluat-
ing solutions against test cases. All interactions with the web app,
such as mouse movement, grabbing of a code fragment, verifying
the solution, and swapping control were recorded. The study was
conducted remotely, with Zoom for voice communication.

4.4 Study Limitations
The problem difculty, length, or the order in which the problems
were administered may have had an impact on the observed interac-
tion patterns. The task duration at 10 minutes per problem is likely
lower than typical collaboration episodes in real pair programming.
Moreover, the difculty of each problem varied: bubble sort was
solved 8/9 times, insertion sort 4/9 times, and selection sort 6/9
times. Our chosen problem set was asymmetrical: the parent func-
tion was shorter than the helper function. The majority (12/18) of
participants had two or more years of programming experience, as
such these results may not generalize to early novices. Lastly, these
results are based on a small sample, and so provide at best anecdo-
tal evidence, which cannot be generalized to learning outcomes or
compared quantitatively to other collaboration paradigms.

5 RESULTS
Three our of our nine pairs were successful in solving all problems
(P1, P5, P9), three solved only two of the three problems (P2, P3,
P8), and another three were successful in solving only one of three
problems (P4, P6, P7). Overall, participants perceived collaboration
to be most efective in Shared-control (10/18) and least efective
in Turn-taking (9/18), with Personal-spaces perceived as mostly
neutral (12/18).

We conducted a thematic analysis of post-interview refections
with a focus on comparing the coordination conditions. The frst
author coded the transcript, deriving 52 codes (e.g., “Did not swap
control because they did not receive a request to”). These codes were
then used to synthesize eight primary themes, which were reviewed
and refned by the frst and second authors. Below, we report the
results of the thematic analysis.

5.1 General Results
5.1.1 Emergence of new roles. Self-perception of roles plays a cru-
cial part in efective collaboration [5]. Across all conditions, partic-
ipants perceived themselves in roles that were not designated by
the task structure. Roles sometimes emerged via expertise, e.g., P4b
conceived of themselves as an “initiator” who got a task in motion

– a task more comfortable for their beginner-level programming
experience, and distinguished this role from the “leader” which
they attributed to their partner. Some other unexpected roles arose
through circumstance: P7b identifed their testing-based role as
a result of the fact that “P7a had a bigger role because we started
with [them] having control frst” (P7b). Some roles were socially
driven, e.g., P6b described themselves as the conversation-starter,
and began verbally walking through a concrete example in attempt
to “start the conversation, so that we can both try thinking out loud
together.”

5.1.2 Parsons problems may help to establish common ground. When
asked to compare their experience in this session to previous syn-
chronous collaborative sessions, multiple participants noted that
these puzzles help bridge the gap between diferent starting skill
levels “it’s sort of like both people are at the same baseline... it’s harder
for one person to realize ‘Oh that’s how we do it’ and just fnish ev-
erything” (P3b). In addition, Parsons problems may help constrain
the space of possible solutions; both partners are working with
the same solution components, and so share a starting point (P6b).
Instead of an infnite number of lines of code for each participant
to try on their own, there are concrete pieces of potential code to
discuss and “you can’t like write whatever you want” (P5b).

5.2 Strategy Specifc Results
5.2.1 Personal-spaces promote collaborative dialog. P7a explained
that Personal-spaces “force you to interact with the other person.
Because you absolutely can’t control their personal space... if you had
an idea, you had to communicate it in a way they would understand.”
P1b noted that the dependencies of the two methods gave rise to
conversation, “you could say ‘Okay my method does this. How does it
afect your method?’.” Some participants found this added friction to
task completion, P8b felt “bottlenecked by the other person. I would
ask like ‘What part of this code do you want?’... I would need to
wait for the other person to engage.” P5a was frustrated by being
unable to manipulate the other space “because I wasn’t able to drag
blocks into [their] section, so I kind of had to like tell [them] what
to do.” The requirement for dialogue also appeared to increase the
amount of agency participants had individually in forming the
solution, as even in cases where participants tried to micromanage
the spaces they could not access, they would still rely on the other
participant’s cooperation. Participants noted that this allowed them
to experience agency in the solutions since “[they’re] the one doing
it, and not [their partner] invading [their] space and doing it for
[them]” (P4b).

5.2.2 Personal-spaces work towards balanced engagement. P1b
noted that even though they were mostly learning from P1a, “I felt
like I did do my part with the Personal-spaces just because I can
focus on one small thing and digest it a little more.” Personal-spaces
also made learning more intentional compared to other conditions:
“sometimes, if you are not paying attention to what the other person
is doing, then you didn’t learn that part... when you have your own
little space, you’re forced to do that part, so you get to learn more”
(P2b). In addition, making participants engage in dialog discour-
aged one person from taking over, unlike in “Shared-control one
and the Turn-taking [which] were the least for communication and

Structuring Collaboration in Programming Through Personal-Spaces CHI EA ’23, April 23–28, 2023, Hamburg, Germany

Figure 2: Frequency of participant dialogue and tool use over time grouped by coordination condition. There were no signifcant
diferences in the average time taken or in the length of verbal dialog between the conditions. Turn-taking sessions were by
far the least symmetric in terms of interactions with the tool with only P7 swapping control to give both partners an even
amount of control time. Note, for visibility purposes, tool use visual marks have added thickness, their size does not correspond
to the exact time taken.

collaboration. Just because it seems like one person can do most of the
heavy lifting.” (P4b). However, the push to involve each participant
towards engaging in their section highlighted imbalance in work-
load assigned due to the helper function being more difcult than
the parent function: “I felt like one method required only little code
while another method required a lot more code” (P1b).

5.2.3 Personal-spaces can fragment collaboration. Multiple partic-
ipants noted that Personal-spaces encouraged divide and conquer,
with communication occurring at the end to synthesize the results.
P7b noted that instead of actively collaborating, they “work[ed] on
the task that’s given to us [in our individual sections] and after a
while we come back together and talk about what we just did.” P4a
“just ignore[d] some details in helper function... that part [is] more
[their] responsibility, so I only need to take care of my part.” This
fragmentation of workload can also fragment the conversation, and
P6a noted that “as soon as we fgure out what diferent roles [our
spaces] have, I’ll just start focusing on my own role. That’s why I tend
to talk a little bit less.”

5.2.4 Turn-taking encourages a single train of thought. Turn-
taking supported participants in synchronizing their approaches
and maintaining joint-attention. In Turn-taking, P3a felt like they
and their partner were on the “same page the whole time... in the
other two, I felt like I didn’t have the assurance because it felt like
[they were] looking at the other side.”. However, a downside of the
single train of thought is that it allows for a single participant to
take over, or conversely, become extremely passive e.g., P3b did not
actively engage with the problem because “I kind of forgot about
bubble sort, so I was in the role of observing”. Moreover, the condition
does not necessitate any dialogue in the event where the driver

chooses to solve the problem alone. P7b described this experience
as “both thinking in our heads instead of talking about it more.” (P7b)

5.2.5 Pairs rarely utilize the ability to swap control in order to bal-
ance involvement. Despite instructions to do so, participants rarely
swapped control (Figure 2) in the Turn-taking condition. When
asked how participants decided to swap, only one pair was con-
cerned with balance and thus swapped control “after fve minutes,
just to give my partner another fve minutes.” (P2a). Instead, swaps
were motivated by practical factors like if the other person has
an “idea, while I haven’t” (P4b). However, practical considerations
would not always result in a swap. As the Co-pilot, P7b was “too
scared to ask to swap control... [and so] just let the other person take
over”, and as a Pilot, P8b felt like they were “on a good train of
thought... [they] didn’t feel the need to swap control or receive a
request to swap control.”

5.2.6 Shared-control provides complete agency. Many partici-
pants expressed their preference for Shared-control since they
were able to execute their own ideas without being ‘held back’ by
their partner. P1a found Shared-control to be the most engaging
because it gave them “the freedom to do what [they thought] should
be done”. Some participants utilized this freedom vary their extent
of involvement. P5b shared that there was a give and take between
them and their partner as “there was parts that I wasn’t sure about
and then [they] help[ed] me with that and... I was able to fgure out
parts that maybe [they weren’t] sure about and then explain it to
[them]”. P5a agreed that in the Shared-control condition “you
complete the parts that you’re sure about that I’m not sure about and
then contribute that way”.

CHI EA ’23, April 23–28, 2023, Hamburg, Germany Hayatpur, et al.

However, this independence came at the cost of disorganized
collaboration. Shared-control was “chaotic and you can acciden-
tally change something that your partner thinks you’re not going
to touch... it could break someone’s train of thought” (P1b). It was
difcult to repair conversations: e.g., “I think the least talking was
Shared-control, because we were like looking at the code and mov-

ing things, and then just the whole conversation thing kind of felt
like a mess” (P3a). Although some participants felt compelled to
describe their thought process to avoid “making the other one feel
that I’m doing things without involving them” (P6a), they did not feel
as if it was required: “[In Shared-control] I didn’t feel obligated to
explain because I could just move everything myself” (P7a).

6 DISCUSSION
Each coordination condition showed strengths and weaknesses
with regards to efective collaboration. Shared-control allowed
for more agency but can lead to one participant dominating and
disorganized communication. Turn-taking promoted a single train
of thought but lead to one participant taking the lead. Personal-
spaces encouraged both participants to contribute – as the lack of
ability to control the other participant’s space necessitates dialogue
to execute ideas in the other user’s space – but lead to division and
dominant participants still verbally micromanaged. Considering
the potential gains and losses discussed above, we believe that
Personal-spaces is a promising approach to allow both participants
to gain insight into the chosen problem. In Personal-spaces, both
participants will have interacted to some extent with the problem,
and will have more incentive to discuss the problem.

6.1 Design Considerations and Future Work
Our technique is inherently tied to the characteristics of Parsons
Problems (i.e., there being a shared and limited resource with code
blocks) and as such it would not directly translate to more general
coding environment. We still hope that our guiding design goals
and subsequent evaluation can serve as a promising start to investi-
gate how collaborative learning can be structured beyond Parsons
Problems. Through our work we have identifed three key areas of
investigation for collaborative programming interfaces.

6.1.1 Problems should be divided evenly and non-trivially. We ob-
served instances where where participants integrated their solu-
tions at the end with Personal-spaces rather than actively engag-
ing with each other’s spaces, which is not ideal for collaborative
learning. Designing sub-problems that (1) have dependence, and
(2) have enough uncertainty that communication is required to
successfully implement them, is crucial to encourage cooperation.
Additionally, in the problem sets we constructed, there was a clear
imbalance of workload: the helper functions were more challenging
than the parent function. By attempting to fx the asymmetry in
Turn-taking by giving each participant their own tasks, there is
an obligation to keep these separate workloads (at least roughly)
balanced. One option to approach this would be to use less strictly
defned problems, which may encourage sharing of the workload
between fnding and communicating requirements. Variations in
Parsons problems, such as faded Parsons problem, which add am-

biguity to the fragments [32], or sub-goals [22], which are at a

fner level of granularity than functions, can also enable new and
interesting designs of such divided problem sets.

6.1.2 Structuring the task structures the conversation. We found that
structuring the task, either with Turn-taking or with Personal-
spaces, helped structure the dialog between participants. Turn-
taking enabled pursuit of a more consistent ‘vision’ of the overall
solution while Personal-spaces emphasized negotiations over
egocentric solutions. However, this work has only investigated
participant perceptions of each condition. Future conversational
analysis is needed to shed light on the discourse between learners:
such as the kinds of dialog (e.g. handling conficts, thinking-out-
loud, [31]), conversational turn-taking and synchronization that
occurred in each condition. While our analysis found no pair-wise
efects, observing participants’ conversations in-situ can illuminate
potential efects of interpersonal dynamics and learning styles (e.g.,
as follower or leader).

6.1.3 Remote collaboration tools can leverage new kinds of inter-
actions to help reach common ground. Participants organized and
re-organized the shared space to spatially reason together about
the problem. They frequently used their cursor to point out objects
and locations, as well as mimic their thought process through ges-
tures with their cursor. Adding expressivity, such as annotations,
to the tool may thus make it easier to repair gaps in understanding,
speaking, or hearing. Additionally, a visualization that helps direct
the conversation could also be a promising direction. For example,
visualizing how long each person was in control, or visualizing the
frequency of conversational turn-taking may help learners refect
on and encourage more democratic collaboration [18].

7 CONCLUSION
We have presented the design of a novel collaboration technique,
Personal-spaces, which addresses the imbalance in pair program-

ming for collaborative learning by dividing the problem into two
parts and assigning each to one learner. We provide preliminary
evidence of the usefulness of this paradigm: Personal-spaces were
unique in their insistence that both participants construct (parts
of) the solution. This level of interaction contributed to a sense and
responsibility and ownership over the solution and discouraged
dominant members from completely taking over the solution. How-
ever, in worse scenarios, participants would divide and conquer to
focus purely on their portion of the code, or become over-involved
in the other person’s space and instruct them how to complete
their solution. Our results highlight the need for structure in col-
laborative tools, use of balanced but ambiguous problem sets, and
provide promising leads for interaction design of future remote
collaboration systems.

REFERENCES
[1] Praveen Aggarwal and Connie L O’Brien. 2008. Social loafng on group projects.

J. Mark. Educ. 30, 3 (Dec. 2008), 255–264.
[2] Carolina Alves De Lima Salge and Nicholas Berente. 2016. Pair Programming

vs. Solo Programming: What Do We Know After 15 Years of Research?. In 2016
49th Hawaii International Conference on System Sciences (HICSS). 5398–5406.
https://doi.org/10.1109/HICSS.2016.667

[3] Brigid Barron. 2003. When Smart Groups Fail. The Journal of the Learning Sciences
12, 3 (2003), 307–359. http://www.jstor.org/stable/1466921

[4] Maxwell Bigman, Ethan Roy, Jorge Garcia, Miroslav Suzara, Kaili Wang, and Chris
Piech. 2021. PearProgram: A More Fruitful Approach to Pair Programming. In

https://doi.org/10.1109/HICSS.2016.667
http://www.jstor.org/stable/1466921

Structuring Collaboration in Programming Through Personal-Spaces

Proceedings of the 52nd ACM Technical Symposium on Computer Science Education
(Virtual Event, USA) (SIGCSE ’21). Association for Computing Machinery, New
York, NY, USA, 900–906. https://doi.org/10.1145/3408877.3432517

[5] Susan Brewer and James D. Klein. 2006. Type of Positive Interdependence and
Afliation Motive in an Asynchronous, Collaborative Learning Environment.
Educational Technology Research and Development 54, 4 (2006), 331–354. http:
//www.jstor.org/stable/30220464

[6] Clark A. Chinn, Angela M. O’Donnell, and Theresa S. Jinks. 2000. The Structure
of Discourse in Collaborative Learning. The Journal of Experimental Education
69, 1 (2000), 77–97. http://www.jstor.org/stable/20152650

[7] Pierre Dillenbourg. 2002. Over-scripting CSCL: The risks of blending collaborative
learning with instructional design.

[8] Barbara J. Ericson, Paul Denny, James Prather, Rodrigo Duran, Arto Hellas, Juho
Leinonen, Craig S. Miller, Briana B. Morrison, Janice L. Pearce, and Susan H.
Rodger. 2022. Parsons Problems and Beyond: Systematic Literature Review
and Empirical Study Designs. In Proceedings of the 2022 Working Group Reports
on Innovation and Technology in Computer Science Education (Dublin, Ireland)
(ITiCSE-WGR ’22). Association for Computing Machinery, New York, NY, USA,
191–234. https://doi.org/10.1145/3571785.3574127

[9] Barbara J. Ericson, Lauren E. Margulieux, and Jochen Rick. 2017. Solving Parsons
Problems versus Fixing and Writing Code. In Proceedings of the 17th Koli Calling
International Conference on Computing Education Research (Koli, Finland) (Koli
Calling ’17). Association for Computing Machinery, New York, NY, USA, 20–29.
https://doi.org/10.1145/3141880.3141895

[10] Stanley M Gully, Kara A Incalcaterra, Aparna Joshi, and J Matthew Beauien. 2002.
A meta-analysis of team-efcacy, potency, and performance: interdependence
and level of analysis as moderators of observed relationships. J. Appl. Psychol.
87, 5 (Oct. 2002), 819–832.

[11] Brian Hanks. 2005. Student Performance in CS1 with Distributed Pair Program-

ming. SIGCSE Bull. 37, 3 (jun 2005), 316–320. https://doi.org/10.1145/1151954.
1067532

[12] Petri Ihantola and Ville Karavirta. 2011. Two-Dimensional Parson’s Puzzles:
The Concept, Tools, and First Observations. Journal of Information Technology
Education: Innovations in Practice 10 (01 2011), 1–14. https://doi.org/10.28945/1394

[13] Lindsay Jarratt, Nicholas A. Bowman, K.C. Culver, and Alberto Maria Segre.
2019. A Large-Scale Experimental Study of Gender and Pair Composition in
Pair Programming. In Proceedings of the 2019 ACM Conference on Innovation and
Technology in Computer Science Education (Aberdeen, Scotland Uk) (ITiCSE ’19).
Association for Computing Machinery, New York, NY, USA, 176–181. https:
//doi.org/10.1145/3304221.3319782

[14] David W. Johnson and Roger T. Johnson. 2009. An Educational Psychology Suc-
cess Story: Social Interdependence Theory and Cooperative Learning. Educational
Researcher 38, 5 (2009), 365–379. http://www.jstor.org/stable/20532563

[15] David W. Johnson, Roger T. Johnson, and Karl Smith. 2007. The State of Coopera-
tive Learning in Postsecondary and Professional Settings. Educational Psychology
Review 19, 1 (2007), 15–29. http://www.jstor.org/stable/23363866

[16] Sandeep Kaur Kuttal, Kevin Gerstner, and Alexandra Bejarano. 2019. Remote
Pair Programming in Online CS Education: Investigating through a Gender Lens.
In 2019 IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). 75–85. https://doi.org/10.1109/VLHCC.2019.8818790

[17] Colleen M. Lewis and Niral Shah. 2015. How Equity and Inequity Can Emerge in
Pair Programming. In Proceedings of the Eleventh Annual International Conference
on International Computing Education Research (Omaha, Nebraska, USA) (ICER
’15). Association for Computing Machinery, New York, NY, USA, 41–50. https:
//doi.org/10.1145/2787622.2787716

[18] Jialang Victor Li, Max Kreminski, Sean M Fernandes, Anya Osborne, Joshua
McVeigh-Schultz, and Katherine Isbister. 2022. Conversation Balance: A Shared
VR Visualization to Support Turn-Taking in Meetings. In Extended Abstracts of
the 2022 CHI Conference on Human Factors in Computing Systems (New Orleans,
LA, USA) (CHI EA ’22). Association for Computing Machinery, New York, NY,
USA, Article 181, 4 pages. https://doi.org/10.1145/3491101.3519879

[19] Charlie McDowell, Linda Werner, Heather Bullock, and Julian Fernald. 2002. The
Efects of Pair-Programming on Performance in an Introductory Programming
Course. SIGCSE Bull. 34, 1 (feb 2002), 38–42. https://doi.org/10.1145/563517.
563353

[20] C. Mcdowell, L. Werner, H.E. Bullock, and J. Fernald. 2003. The impact of
pair programming on student performance, perception and persistence. In 25th
International Conference on Software Engineering, 2003. Proceedings. 602–607.
https://doi.org/10.1109/ICSE.2003.1201243

[21] Charlie McDowell, Linda Werner, Heather E. Bullock, and Julian Fernald. 2006.
Pair Programming Improves Student Retention, Confdence, and Program Quality.
Commun. ACM 49, 8 (aug 2006), 90–95. https://doi.org/10.1145/1145287.1145293

[22] Briana B. Morrison, Lauren E. Margulieux, Barbara Ericson, and Mark Guzdial.
2016. Subgoals Help Students Solve Parsons Problems. In Proceedings of the 47th
ACM Technical Symposium on Computing Science Education (Memphis, Tennessee,
USA) (SIGCSE ’16). Association for Computing Machinery, New York, NY, USA,
42–47. https://doi.org/10.1145/2839509.2844617

CHI EA ’23, April 23–28, 2023, Hamburg, Germany

[23] Nachiappan Nagappan, Laurie Williams, Miriam Ferzli, Eric Wiebe, Kai Yang,
Carol Miller, and Suzanne Balik. 2003. Improving the CS1 Experience with
Pair Programming. In Proceedings of the 34th SIGCSE Technical Symposium on
Computer Science Education (Reno, Navada, USA) (SIGCSE ’03). Association for
Computing Machinery, New York, NY, USA, 359–362. https://doi.org/10.1145/
611892.612006

[24] John T. Nosek. 1998. The Case for Collaborative Programming. Commun. ACM
41, 3 (mar 1998), 105–108. https://doi.org/10.1145/272287.272333

[25] Dale Parsons and Patricia Haden. 2006. Parson’s Programming Puzzles: A Fun
and Efective Learning Tool for First Programming Courses. In Proceedings of
the 8th Australasian Conference on Computing Education - Volume 52 (Hobart,
Australia) (ACE ’06). Australian Computer Society, Inc., AUS, 157–163.

[26] Fernando J. Rodríguez, Kimberly Michelle Price, and Kristy Elizabeth Boyer.
2017. Exploring the Pair Programming Process: Characteristics of Efective
Collaboration. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on
Computer Science Education (Seattle, Washington, USA) (SIGCSE ’17). Association
for Computing Machinery, New York, NY, USA, 507–512. https://doi.org/10.
1145/3017680.3017748

[27] Karin Scager, Johannes Boonstra, Ton Peeters, Jonne Vulperhorst, and Fred
Wiegant. 2016. Collaborative Learning in Higher Education: Evoking Positive
Interdependence. CBE—Life Sciences Education 15, 4 (2016), ar69. https://doi.
org/10.1187/cbe.16-07-0219 arXiv:https://doi.org/10.1187/cbe.16-07-0219 PMID:
27909019.

[28] Max O. Smith, Andrew Giugliano, and Andrew DeOrio. 2018. Long Term Efects
of Pair Programming. IEEE Transactions on Education 61, 3 (2018), 187–194.
https://doi.org/10.1109/TE.2017.2773024

[29] Despina Tsompanoudi, Maya Satratzemi, Stelios Xinogalos, and Leonidas Karami-

topoulos. 2019. An Empirical Study on Factors related to Distributed Pair Pro-
gramming. International Journal of Engineering Pedagogy (iJEP) 9 (04 2019), 61.
https://doi.org/10.3991/ijep.v9i2.9947

[30] Simon Veenman, Eddie Denessen, Anneriet van den Akker, and Janine van der
Rijt. 2005. Efects of a Cooperative Learning Program on the Elaborations of
Students during Help Seeking and Help Giving. American Educational Research
Journal 42, 1 (2005), 115–151. http://www.jstor.org/stable/3699457

[31] Astrid J S F Visschers-Pleijers, Diana H J M Dolmans, Bas A de Leng, In-
eke H A P Wolfhagen, and Cees P M van der Vleuten. 2006. Analysis
of verbal interactions in tutorial groups: a process study. Medical Educa-
tion 40, 2 (2006), 129–137. https://doi.org/10.1111/j.1365-2929.2005.02368.x
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2929.2005.02368.x

[32] Nathaniel Weinman, Armando Fox, and Marti A. Hearst. 2021. Improving In-
struction of Programming Patterns with Faded Parsons Problems. In Proceedings
of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama,
Japan) (CHI ’21). Association for Computing Machinery, New York, NY, USA,
Article 53, 4 pages. https://doi.org/10.1145/3411764.3445228

[33] Linda L. Werner, Brian Hanks, and Charlie McDowell. 2004. Pair-Programming
Helps Female Computer Science Students. J. Educ. Resour. Comput. 4, 1 (mar
2004), 4–es. https://doi.org/10.1145/1060071.1060075

[34] Laurie Williams, D. Scott McCrickard, Lucas Layman, and Khaled Hussein. 2008.
Eleven Guidelines for Implementing Pair Programming in the Classroom. In
Agile 2008 Conference. 445–452. https://doi.org/10.1109/Agile.2008.12

[35] Merlin C. Wittrock. 1989. Generative Processes of Comprehension. Educational
Psychologist 24, 4 (1989), 345–376. https://doi.org/10.1207/s15326985ep2404{_}2
arXiv:https://doi.org/10.1207/s15326985ep2404_2

https://doi.org/10.1145/3408877.3432517
http://www.jstor.org/stable/30220464
http://www.jstor.org/stable/30220464
http://www.jstor.org/stable/20152650
https://doi.org/10.1145/3571785.3574127
https://doi.org/10.1145/3141880.3141895
https://doi.org/10.1145/1151954.1067532
https://doi.org/10.1145/1151954.1067532
https://doi.org/10.28945/1394
https://doi.org/10.1145/3304221.3319782
https://doi.org/10.1145/3304221.3319782
http://www.jstor.org/stable/20532563
http://www.jstor.org/stable/23363866
https://doi.org/10.1109/VLHCC.2019.8818790
https://doi.org/10.1145/2787622.2787716
https://doi.org/10.1145/2787622.2787716
https://doi.org/10.1145/3491101.3519879
https://doi.org/10.1145/563517.563353
https://doi.org/10.1145/563517.563353
https://doi.org/10.1109/ICSE.2003.1201243
https://doi.org/10.1145/1145287.1145293
https://doi.org/10.1145/2839509.2844617
https://doi.org/10.1145/611892.612006
https://doi.org/10.1145/611892.612006
https://doi.org/10.1145/272287.272333
https://doi.org/10.1145/3017680.3017748
https://doi.org/10.1145/3017680.3017748
https://doi.org/10.1187/cbe.16-07-0219
https://doi.org/10.1187/cbe.16-07-0219
https://arxiv.org/abs/https://doi.org/10.1187/cbe.16-07-0219
https://doi.org/10.1109/TE.2017.2773024
https://doi.org/10.3991/ijep.v9i2.9947
http://www.jstor.org/stable/3699457
https://doi.org/10.1111/j.1365-2929.2005.02368.x
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2929.2005.02368.x
https://doi.org/10.1145/3411764.3445228
https://doi.org/10.1145/1060071.1060075
https://doi.org/10.1109/Agile.2008.12
https://doi.org/10.1207/s15326985ep2404{_}2
https://arxiv.org/abs/https://doi.org/10.1207/s15326985ep2404{_}2

	Abstract
	1 Introduction
	2 Related Work
	2.1 Collaborative Learning in Computer Science
	2.2 Positive Interdependence
	2.3 Parsons Problems

	3 Collaborative Parsons Problems
	3.1 Design Outcome
	3.2 Problem Set Design

	4 Exploratory Study
	4.1 Participants
	4.2 Study Procedure
	4.3 Implementation and Data Collection
	4.4 Study Limitations

	5 Results
	5.1 General Results
	5.2 Strategy Specific Results

	6 Discussion
	6.1 Design Considerations and Future Work

	7 Conclusion
	References

